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Dynamic equations of generalized thermoelasticity are derived for the Cosserat 
continuum, the theorem of uniqueness of solution of the problem is proved, and 
an expression is derived which represents the content of a theorem analogous 
to the reciprocal theorem. 

The development of experimental physics at the present time gives rise to the need of 
a theoretical investigation of solid deformable media possessing more complex properties 
than the classical thermoelastic medium. As was noted in [i], the theory of the Cosserat 
continuum more accurately describes the process of deformation of granular and crystalline 
media. On the other hand, the law of heat conduction of Fourier forms the basis of the 
classical thermoelasticity, a consequence of which is an infinite rate of propagation of 
heat. Such a model cannot always be considered satisfactory. The account of finiteness 
of the propagation rate of heat can be important when investigating the effect of a short 
pulse of laser radiation on a thermoelastic medium. 

The equations of statics of the Cosserat continuum were rigorously derived in [2] and 
on the principle of d'Alembert dynamic equations were obtained relative to kinematic charac- 
teristics. In [3], on the basis of equations of motion from [4], and also in [I], with the 
use of the principle of d'Alembert, equations of coupled thermoelasticity have been obtained 
for the Cosserat medium in the case of an infinite rate of heat propagation. The heat-con- 
duction equation, with a finite propagation rate of heat taken into account, has been 
obtained in [5, 6] by means of introducing an additional term into the Fourier heat-conduc- 
tion law. As a development of these works, there appeared a derivation of a system of equa- 
tions of symmetric thermoelasticity with a finite rate of heat propagation in [7, 8]. An 
entire series of papers, e.g., [9-13], has been devoted to the investigation of the equa- 
tions of symmetric thermoelasticity thus obtained. 

A stress state arising in the Cosserat medium is described by a tensor of force stresses 
T and a tensor of moments stresses M, the external action on the medium is characterized by 
vectors of body forces X, body moments Y, surface forces F, and surface moments P. It is 
assumed that a temperature distribution @ takes place. We assume that the medium is homo- 
geneous, isotropic, and polarly symmetric. For the description of the motion of such a 
medium we have to introduce kinematic characteristics -- a vector of displacements u and a 
vector of small rotation m. 

We consider an arbitrary volume of the Cosserat medium ~bounded bY the surface A. We 
assume that each elementary volume d ~ is characterized by the mass pd ~and the inertia tensor 
Ida. To derive the equations of motion we have to use the equations of variation of the 
momentum R and the moment of the momentum K. If we consider the motion of a medium posses- 
sing a field of translational velocities V and velocities of rotation ~, in Euler coordinates~ 
then the elementary volume d@ possesses the momentum 

dRN = pNV~d~ (I) 

and the moment of the momentum about the origin of the coordinates (.)O 

dKN= {I. O~-~oN • ONVN}d~N, (2) 

where ~ON is the Euler radius vector of the point N. We assume that (.)N coincides with the 
center of inertia of the volume d~. 

In the analysis of the equations of variation of momentum and the moment of momentum, 
we have to use the rule of determination of the material derivative of the integral expres- 
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sion in Euler variables presented, e.g., in [i]. For an arbitrary volume of the medium 
moving with a field of translational velocities V, the following equality holds: 

" Ot  ;, 

s{ ~176 ,, } = 0-----7- + V (~). V[ (~, t) + [ (g, /)v'V(g) dq)(~). (3) 

In addition, we have to take into account the continuity equation, which is a consequence 
of conservation of the mass: 

0p + V.V9+ 9V.V_ 0" (4) 
ot 

The equations of variation of momentum and the moment of momentum have the form 

D 
] p(~)V (~)dq~(~) =.[ X(~)dq)(~) +] n (~). T (~;) d6 (~;); 

D t  a, o a (5) 

D .I 0 (g)'~ (~)+ ~ • P (~) V (~)} d~o (~) =. ~ {~ • X (0 + V(,)}d,p(~) + S {n (~). M (~) + g • In (g). T (~)1} a~ (~). 
D t  ,t, r A 

Having used the differentiation rule (3), the continuity equation (4) and an analogous equa- 
tion relative to I, and also the theorem of Ostrogradskii--Gauss, in view of arbitrariness 
of the volume ~ we obtain the local equations of motion 

DV(~, t) . 
V" T (~, t) + X (~, t) = p D t  ' 

v ' M  (~, t) + Y (~, t) - -  2a r (~, t) = ! .  

Here a T is a vector accompanying the tensor T [14]. 

D~(~, t) 

Dt 
(6) 

It should be noted that if we neglect the terms of the second order of smallness, as is 
always done in the linear theory of elasticity, then the equations assume the form 

02U (r, t) 
at  z 

(7) 

v 'T ( r ,  t ) + X ( r ,  t ) - p  

v .M(r ,  t ) + V ( r ,  t ) - -2a r ( r ,  t ) = l .  a2~ t) 
Ot 2 

where r is the Lagrange vector of a point. 

For the derivation of the complete system of equations of thermoelasticity, we require 
the defining equations. These equations are presented in [i] and have the form 

T = 2 ~ , + +  2r (X? +. .  E -  vO0~)E; 

M = 2?~r + + 2eg- + ~ (x +.. E) E; (8) 

s=vy+..E+m@0~, 
where 

Here the following notation has been introduced: n~ is an antisymmetric tensor for which 
is the accompanying vector; ~, ~, %, ~, y, e, B, m are material constants, introduced in 

[I], which characterize the mechanical and thermophysical properties of the medium. By the 
index plus we have marked the symmetric part of the corresponding tensor, and by minus the 
antisymmetric part. For the derivation of the heat-conduction equation we require the 
third of the defining equations (8), the equation of the entropy balance [15] 

O~=-v.q+w (io) 
and the generalized Fourier law [5] 

~q + q = _ OokV~. (11) 
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Eliminating from these three equations s and q, we obtain the generalized heat-conduc- 

tion equation 
w ~oW (12) 

k V~O - -  %00 m ~  - -  Oo m '~--%v v .  ii - -  v v �9 u - 
Oo O0 

Having used Eqs. (6) and the first two from (8), we obtain the system of equations relative 
to the kinematic characteristics u and m: 

(l~+a)V~u + (~--~z + ~) VV-U + 2o~V x o~ + X -  v O o v ~  = ~,u; 
(13) 

(u + e) V 2m + (? - -  e + 1~) VV" o + 2~ v X u - -  4ao + u = 1. o. 

Equations (13)and (12) represent the complete system of equations of generalized thermo- 
elasticity for the Cosserat medium. 

We consider a body occupying a volume r bounded by the surface A* for given vectors 
of body forces X*, body moments Y*, surface forces F*, andsurface moments P*. We assume that 
inside the volume there takes place heat release with density w*, while on the surface a tem- 
perature H* is given. 

Having multiplied the first of Eqs. (7) scalarly by u, and the second by ~, having 
integrated over the volume, and having used the Ostrogradskii--Gauss theorem, the first 
two defining equations (8), andthe boundary conditions, we obtain the first energy equation 

A + L - -  1i7 - -  II+v~)oJ #V" u dq) = 0, ( 14 )  
O* 

where 

S ( ~ . v . + , ~ . p * ) ~ 6  = A; .f ( ; , . x * + , L v * ) d ~  = L; 
A* ~*  

I {p i~%0.,g), io} ~ = 2~; 
~, (15) 

~ , ~,(~+.. x+)+ ~(~-.. ~-) + ~(~'+'' ~'+) + ~(~'-"" ~'-) + (v" ~o)~+ (v' u) 2 dq) = n. 

Having multiplied (12) by 19 and integrated over the volume, we obtain, with the assumption 
about the distribution of the temperature H* being given on the surface, the second energy 
equation 

Q + U -i- X =  I~-i - vOo.i ~V" ud~. (16) 

The following notation has been used here: 

A* ~*  

i @2d~ ---- F; (17) 
2 ~x,* 

ook .[ (ve) 2 + ,o Oo .f + , - oOo .f iid  = - x .  

Eliminating from (14) and (16) the common term, we obtain the fundamental energy equation 

A + L + Q + U + X -- (f/+ II + fZ (18) 

Equation (18) can be used for the proof of uniqueness of the solution of the problem. 
We assume that y, E, ~, p, ~, X, m>--O. If we assume that the problem has two solutions: 
u~, m~, ~ and u2, m2,~2, then mo=mz -- m2, Uo=U~ -- u=, ~o=~x -- #2 is also a solution 
and at the same time satisfies the homogeneous boundary conditions and the zero initial 
conditions. The fundamental energy equation in this case has the form 

I~o + l]o+ fo == Xo. (19) 

Integrating (19) over time in the interval from 0 to t, we obtain, taking into account the 
initial conditions, 
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t 

VCo(t) + no(t) + ro(t) ---] Xodt. (20) 
0 

It should be mentioned that the terms located on the left side of the equation are nonnega- 
tire according to definitions (15) and (17). We consider the integrand function on the right 
side of (20). Transforming it in accordance with the equation of entropy balance (i0) and 
the defining equation for entropy (8), we obtain 

-Xo=Ook.[ (rOot-a~ + ~omO o f ~o8o~O + vToOo,i' 8o v.,id,~ 
cD* cD* cO* 

= Ook .( (V8o)2 dq ~ -+- ZoOo ~ S'o8o dqo---Ook.[ (V8o)2 dq 9 -  "co [ Oo V" qodq~--"~o0o.I" So4odcP %,0o ~ SoS~d ~. (21) 
~ *  cD* cD* q~* q)* ~ ,  

Since we consider the linear theory of thermoelasticity, in the investigation of expression 
(21) we have to retain only the first-order terms. Consequently, the expression for Xo can 
be transformed in the following manner in accordance with the generalized Fourier law (ii)" 

- X o =  Ook~ (VSo)~e~ -- ToS 8or. qo~  = Ook ((VSo)~e~ - 1:o 

• ( v.~ooqo)~ + to ~ qo.vSod~ : Ook.t" IV~or-~-*o 

• S Oon. qod6+ To.I qo.vOodq9 : Ook .t (VOo)~'dq ~ - - , [  qo'VOodq~--Ook.I (VSo)2dq~ : . I  qo'VSod% (22) 
A* ~*  ~ *  ~D* '-D* ~b* 

As is known from the thermodynamics of irreversible processes [15], 

--  (q. VO) 0-~0o ~ O. (23) 
Consequently, Eq. (20) is possible only in the case where 

U o = 0 ;  o o = 0 ;  0 o = 0 .  (2/4) 

Thus, 

U, = a,,; r = r 8 ,  = 8o., ( 25 )  

and the solution of the boundary-value problem of thermoelasticity for the Cosserat medium 
in the case of a finite rate of heat propagation is unique. It should be noted that for 
I=0, Y=0, P=0, y=0, e=0 the proof just presented is transformed into the proof of 
uniqueness of the solution of the boundary-value problem of generalized thermoelasticity 
for a symmetric medium [8]. At the same time, it seems that the proof of uniqueness of 
the solution of asuchproblempresented in [8] contains an inaccuracy, since it rests on the 
assumption Solo >-- 0 which, in our view, is not substantiated. 

As is seen from the analysis of the expressions for Xo, (21)and (22), it can be shown 
that the right side of the expression (1.73) in [8] is negative in the aggregate, which is 
sufficient from the proof of the theorem. 

We consider two systems of acting forces, moments and heat sources, and also their 
corresponding kinematic and force variables and temperatures (primed and nonprimed). Going 
over in Eqs. (7), (8), and (12) to the Laplace transforms, we can obtain the following two 
equations : 

~ , . . v ; -  T;..v~ + M ~ . . , , ; -  M;.. ,~ = ~Oo <o ;E . . v , -  o~e..v;); 
(26) 

Integrating these equations over the volume and transforming them by means of the Ostrograd- 
skii--Gauss theorem, the equations of motion, andthe boundary conditions, after elimination 
of the common term we obtain the equation 

(27) 
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Expression (27) constitutes the content of the reciprocal theorem relative to the variables 
transformed according to Laplace. Having used the theorem on convolution, it is not diffi- 
cult to obtain the final form of the theorem 

#[ ~ [au'(r, x) .  X(r, t - -~)  0u(r, ~) ,, X'(r, t - - r )  + c3__~'(r, r) . u t - -~)  Oco(r, r) . Y'(r, t - - ~ ) ]  
[$'L 0t 0r 0r 0r 

[ 0 ~ ( r ,  r) .X(r, t - - r ) - -  02u(r' r) .X ' ( r , t - - x )  + .Y(r, t - - r ) -  
+ ro L 0r2 ar~ ar z a~ 

aO'(r, ~) w(r, t - r )  - -~ ' (r ,  r)w(~, t - - r ) + ~ ( r ,  ~)w'(r, t - - ~ ) - - r o  0z 

0,~(r, x)0.c ~v'(r, t - - x ) ]  dcp-+-! [ .  0u'(r, r ) 0 r  . F(r, t - -x )  

�9 V'(r, t - - r ) ]  

Ou (r,a~ ~) �9 F'(r, t --  ~) + a~'a~(r, ~) . p (r, t - ~) h__ a~ (r,a~ ~) "p' (r, t - -  ~) + % [ a2u'a~ 2(r' ~) . F (r ,  ! - -  ~)  

a2u (r, ~) . F'Cr, t - -  ~) + 02~' (r, ~) . p (r, t - -  ~) 
arz 0r 2 

_ a2m (r, r) . p, (r, t -- r)] -- Ook[H'(r, t - -  ~)v~(r, ~)  
a r  2 J 

--  H(r, t - -  r)V~' (r, r)l.n(r) ] d~ (r)} d~ = 0. (28) 

It is not difficult to see that for To = 0 the expression just found is transformed into 
the result obtained in [i, 3] for the Cosserat continuum in the case of an infinite rate of 
propagation of heat, while for P = 0, Y = 0 it is transformed into the expression for the recip- 
rocal theorem for symmetric thermoelastic medium with a finite rate of heat propagation [8]. 
Here we have to bear in mind that in the derivation of expressions (26)-(28) we assumed that 
the initial conditions were zero conditions. 

NOTATION 

| absolute temperature; d~, surface element; ~, Euler radius vector of a point; r, 
Lagrange radius vector of a point; n, vector of the external normal to the surface; E, unit 
tensor; s, entropy per unit volume; q, vector of heat flux; w, density of volumetric heat 
release; # = (| | o)| relative deviation of temperature from the initial value; Go, ini- 
tial absolute temperature of the medium; y, asymmetric strain tensor; ~, tensor of flexure 
and torsion; To, constant characterizing the rate of heat propagation; k, coefficient of 
thermal conductivity; A, mechanical power of external surface forces; L, mechanical power 
of external body forces; W, kinetic energy of strain; ~, potential energy of strain; X, 
dissipation function; P, temperature potential; U, thermal analog of the power of internal 
sources; Q, thermal analog of the power of the surface of sources. 
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KOCHIN--LOITSYANSKII METHOD IN FREE CONVECTION PROBLEMS 

Yu. A. Sokovishin and A. G. Semenov UDC 536.25 

Freely convective heat transfer is computed by the Kochin--Loitsyanskii method 
on a vertical plate whose temperature is variable. 

Integral methods used for approximate computations of freely convective heat transfer 
are based on the approximation of the exact velocity and temperature profiles in the bound- 
ary layer o 9 polynomials or other functions (exponentials, for instance). The boundary- 
layer "thickness" and longitudinal velocity scale introduced provisionally are determined 
from the solution of the integral equations. A method using a particular class of exact 
solutions, a one-parameter family of self-similar profiles [i], exists in boundary-layer 
theory. A strictly defined quantity, the thickness of the momentum loss, which is a func- 
tional of the solution of the boundary-layer equations, is used as the scale of the trans- 
verse coordinate. We use this idea to compute freely convective heat transfer. 

Let us consider free convection on a vertical plate with a given wall temperature @ w. 
We assume that the energy dissipation and work of compression are negligibly small. Inte- 
gral equationsin a freely convective boundary layer have the form [2] 

d u~dy=g~ ~dy--~ Ou 
dx b Oy y=o 

d iu~dy=-- ~ a~ I 
dx o Pr ay ~=o" 

Let us introduce the transformation scale 

- y 

and substituting dimensionless functions in the equations, we obtain 

(1) 

(2) 
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